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Abstract

Image classification it generally requires a priori knowledge about the
objects to be classified. In this paper, we present a new method to segment
tumor in multispectral magnetic resonance (MR) images of the human brain.
The proposed approach, called Minimum V ariance Distortionless Response
beamforming (MVDR) was introduced in [15] where only the knowledge of
the desired signature to be classified was required. It was a special case of
Linearly Constrained Minimum Variance Beamforming (LCMYV) in array
processing. MVDR considers an MR image classification problem as an
array-processing problem where each sensor represents one spectral band. It
uses a finite impulse response (FIR) filter to minimize the output power
while the desired signature is constrained to a specific gain. That is the
response of the beamformer is constrained to equal unity at the electrical
angle. The method has been evaluated through several experiments. Results
show that the cerebral tissue was segmented accurately into four images,
tumor, gray matter, white matter and cerebral spinal fluid indicating the
possible usefulness of this method. Asfar ascomputing saving isconcerned,

the experimental results also show computational complexity improvement.
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1. Introduction

Nuclear magnetic resonance (NMR) has recently developed as a versatile technique in many fields
such as chemistry, physics, engineering because its signals provide rich information about material
structures that involve the nature of a population of atoms, the structure of their environment, and the
way in which the atomsinteract with environment [1]. When NMR is applied to human anatomy, NMR
signals can be used to measure the nuclear spin density, the interactions of the nuclei with their
surrounding molecular environment and those between close nuclei, respectively. It producesasequence
of multiple spectral images of tissues with a variety of contrasts using three magnetic resonance
parameters, spin-lattice (T1), spin-spin (T2) and dual echo-echo proton density (PD). By appropriately
choosing pulse sequence parameters, echo time (TE) and repetition time (TR) a sequence of images of
specific anatomic area can be generated by pixel intensities that represent characteristics of different
types of tissues throughout the sequence. As a result, Magnetic Resonance Imaging (MRI) becomes a
more useful image modality than X-ray computerized tomography (X-CT) when it comesto analysis of
soft tissues and organs since the information about T1 and T2 offers a more precise picture of tissue
functionality than that produced by X-CT [2].

One potential application of MRI in clinical practice is the brain parenchyma classification and
segmentation of normal and pathological tissue. It is the first step to address a wide range of clinical
problems. By means of the volume, shapes and region distribution of the brain tissue, one can find the
abnormalities that are commonly related to the conditions of heterotopias, lissencephaly, brain atrophy,
and cerebral infarction. Over the past years many computer-assisted methods have been reported [1]-[11]
such as neural networks [5]-[9], hybrid methods [10], knowledge-based techniques [11], etc. For
example, neural networks have demonstrated their superior performance in segmentation of brain tissue
to classical maximum likelihood methods; hybrid methods have shown a promise by combining imaging
processing and model -based techniquesin segmentation [ 10]; knowledge-based techniques allows oneto
make more intelligent classification and segmentation decisions[11].

In image classification it generally requires a priori knowledge about the objects to be classified.
Although it can be done in an unsupervised fashion, the results are generally not so good as supervised
methods. It will be even worse if the objects are relatively small or the image background varies with
pixel-by-pixel. Obtaining such prior information is not realistic in many practical applications. In this
paper, we present a new approach to MRI classifications, called Minimum Variance Distortionless
Response (MVDR) Beamforming, which does nat requite background information. More specifically,
the only working knowledge for MV DR is the desired object of interest. MVDR discard all other
information. Thisis significant advantage in the case when an image contains unknown and unidentified
objects. MV DR assumes that the direction of arrival from the desired signal is known a priori. Then it
designs an adaptive filter to pass the desired signal with a specific gain so that the filter output resulting

from unknown sources such as undesired signals and unwanted interferers can be minimized. Where the
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specific gain was chosen to be unity.

The remainder of this paper is organized as follows. Section Il describes the Minimum
Variance Distortionless Response (MVDR) Beamforming approach. Section Il conducts a set of
experiments to evaluate the effectiveness of MVDR in classification performance when MR
images are used for analysis. Section IV concludes with some comments on the results

achieved.

2. Minimum Variance Distortionless Response (MVDR) Beamforming
Approach

Basically, MVDRusesafiniteimpulseresponse FIR filter toconstrainthedesired object signature
by using unity as a specific gain while minimizing the filter output energy. MVDR was developed for
array processing [12]-[16] with the desired object interpreted as the direction of arrival from a desired
signal. It can be derived asfollows

Lety(n) denotetheoutput of the designedlinear transversal filter resulting from theinputr(n-l) andw

is the respective tap weight and | = 0,1,...,L-1. Then y(n) can be written as

L-1 .
y(n)=a w r(n- 1) &
1=0

where asterisk denote complex conjugation. For special case of a sinusoidal excitation r(n) can be as

e /o where ¢ isthe electrical angle denoted the direction of arrival. Then y(n) can be rewritten as

L1,
y(n) =ro(n)a w e " @
1=0

whererg (n) isthefirst electrical signal treated as the point of reference. The objective of the constrained
optimization problem isto minimize the variance of the beamformer output subject to follow constraint

L-
[o]
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It is worth noting that the constraint g in Eqg. (3) can be replace by unity. The constrained
optimization problem can be solved by the method of Lagrange multipliers. It combines two parts of

constrained optimization problemis given by
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output power linear congraint

The solution to EqQ. (4) by minimizing the output power and subject to the constraint was called

Minimum Variance Distortionless Response (MVDR) Beamforming filter with the weight vector W
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given by
W o R7d()
°d(f)R(F )

where R is L-by-L correlation matrix, andW ;is the L-by-1 optimum weight vector of the constrained

©

beamformer. The L-by-1 desired target vector d(f ) isdefined by

d(f ) =[Le o, va, e D]t (6)

3. Experimental results

A set of multispectral MR brain images was used to evaluate the performance of OSP and UOSP. It
consists of MR images acquired from a patient with abnormal physiology (shown in Fig. 1) using four
bands with resolution 8-bit gray level and 256 by 256 pixels. T1-weighted and T2-weighted images were
acquiredfor band oneand two. PD-weighted and Gd-DTPA imageswereacquired for band threeand f our.
The slice thickness of all MR images are 2mm and axial section were taken from Signa 1.5T
SYSHGEMSOW. All experiments were under supervision of aneuroradiologist.

The radiance spectra of four cerebral tissues, gray matter (GM), white matter (WM), cerebral spinal
fluid (CSF) and tumor used for MV DR are shown in Fig. 2. All spectra were extracted directly from the
MR images and verified by experienced radiologists. Fig.3 show the classification results of MVDR
based on the four images in Fig. 1 where the images labeled by (a), (b), (c) and (d) were generated
respectively by using GM, WM, CSFand tumor as desired signaturesd. As far as computing saving is
concerned, the segmentation results in Fig. 4 were produced using the autocorrelation matrix
without background mixed vector. Thisonly uses 17683 mixed pixel vectors for multiplication
while the original images requires 65536 multiplication's. Fig. 5 shows the classification
results using the autocorrelation matrix with only undesired pixels. 1t even only uses2 mixed
pixel vectors for multiplication. The results show that the computation load is significantly
reduced. As shown in Fig. 3, Fig. 4 and Fig. 5, the MVDR technique was able to correctly
segment the MR images into the desired target signature of cerebral tissue. Asafinal comment,
in order to evaluate MVDR in al aspects only one representative MR image sequence was studied for
experiments in this paper. In fact, more experiments were also conducted for performance evaluation.

The results draw similar conclusions.

4. Conclusion

Brain MR images segmentation isthe critical step in the analysis of brain pathology. In this paper, we
present aMinimum Variance Distortionless Response (MVDR) Beamforming approach to desired target

signature detection and classification of brain MR images. MVDR views an MR image sequence as a
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multispectral image cube with each pixel represented by spectral pixel vector. By considering the image

cube as awhole, MVDR is able to capture both spectral and spdial correlations for classification. The

major advantage of MVDR is that no background information is required. The idea of MVDR is to

consider the MR image classification problem as an array-processing problem where each sensor

representsone spectral band. Since thetarget signatureistheonly signaturethat isof interest, an adaptive

filter can be designed to pass the desired target with the specific gain so that the filter output resulting

from an unknown source can be minimized. Experimental results have shown that the MV DR technique

wasableto correctly classify thecerebral tissueinto four-image gray matter, white matter, cerebral spinal

fluid and tumor indi cating the promising possibilities of this method.
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(a) (b)

(c) (d)

Fig. 1. The MR images of the brain. Axial section. (a) T1-weighted image; (b) T2-weighted
image; (c) Proton density image; (d) Gd-DTPA
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Fig. 2. Four bandsradiance spectrum.



(a) (b)

(c) (d)
Fig. 3. Classification results of MVDR . (a) gray matter; (b) white matter; (c) cerebral spinal
fluid, (d) tumor.
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(@) (b)
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c

Fig. 4. Classification results of MVDR using the autocorrelation matrix without

background. (a) gray matter; (b) white matter; (c) cerebral spinal fluid, (d) tumor.



Fig. 5. Classification results of MVDR using the autocorrelation matrix with only

undesired pixels. (a) gray matter; (b) white matter; (c) cerebral spinal fluid, (d) tumor.
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